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The centrifugal instability of a Stokes layer has been investigated by Seminara & Hall 
(1976, 1977). It was found that the Stokes layer on a torsionally oscillating circular 
cylinder is unstable to perturbations periodic along the axis of the cylinder when the 
Taylor number for the flow exceeds a certain critical value. The weakly nonlinear 
theory given by Seminara & Hall showed that, if nonlinear effects are considered, a t  
this Taylor number a stable axially periodic equilibrium flow bifurcates from the 
basic circumferential flow. It is known experimentally that this equilibrium flow be- 
comes unstable to disturbances having a longer axial wavelength a t  a second critical 
Taylor number about 10 "4 greater than the first critical value. Moreover it is known 
that, in the initial stages of this destabilization, a mode having twice the axial wave- 
length of the fundamental is present. I n  this paper we investigate the linear stability 
of the bifurcating solution to such a subharmonic mode. An approximate solution of 
the linear stability problem shows that the subharmonic becomes unstable a t  a 
Taylor number remarkably close to the experimentally measured second critical 
Taylor number. 

1. Introduction 
In  this paper we are concerned with the stability of a Stokes layer on an infinitely 

long torsionally oscillating circular cylinder. We shall first give a brief account of some 
experimental results which are relevant to our investigation. 

Seminara & Hall (1976, 1977), hereafter referred to as I and I1 respectively, des- 
cribed the results of a qualitative experimental investigation of the flow set up by a 
long circular cylinder oscillating torsionally about its axis. The cylinder used was such 
that its radius was large compared to the boundary layer sat up by the motion of the 
cylinder. It was found that the Stokes layer is stable until the Taylor number for the 
flow reaches a critical value of about 210. At this stage a Taylor vortex equilibrium 
flow develops when the Taylor number is increased. This flow is periodic in time and 
along the axis of the cylinder. However, only the radial and axial velocity components 
have steady terms in their Fourier decomposition. If the Taylor number is increased 
further then, a t  a Taylor number of about 262, the equilibrium flow described above 
becomes unstable. At this Taylor number neighbouring vortices of the Taylor vortex 
flow appear to interact with each other to produce bigger vortices. The crude flow 
visualization method used in I was not good enough to ascertain the development of 
the flow after the initial interaction between neighbonring vortices. However, it was 
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possible to see that, a t  some stage in the development of the flow after the second in- 
stability, the azimuthal velocity of the fluid acquired a steady component. It was not 
possible to tell with any certainty whether the new flow was dependent on the cir- 
cumferential angle 8. 

We now tun1 to the more recent quantitative experimental investigation of the 
problem by Donnelly & Park (1980). The latter authors were able to investigate in 
detail the development of the flow after the onset of the second instability. They also 
found that the first sign of this instability is the interaction of neighbouring cells in 
the Taylor vortex flow to produce bigger cells. The larger vortices then interact again 
to produce still bigger vortices. This process then continues but in a short time there 
is no apparent axial periodic structure to  the flow. There is certainly no simple equili- 
brium configuration reached a t  the end of this process. At some stage after the initial 
‘doubling up’ of the vortices the flow becomes B dependent. I n  some cases Donnelly & 
Park observed that the equilibrium Taylor vortex flow was modulated along the axis 
of the cylinder on a length scale of the same order as the radius of the cylinder. I n  this 
case the onset of the second instability always occurred a t  the axial positions where 
the modulation had its maximum amplitude. 

We shall now briefly describe the theoretical progress which has been made towards 
an understanding of the flow described above. I n  I the linear stability of a thin Stokes 
layer on a torsionally oscillating cylinder was investigated. It was found that the 
Stokes layer is unstable to centrifugal instabilities for Taylor numbers greater than 
232.5. The weakly nonlinear theory given in I1 showed that a t  this Taylor number 
a stable equilibrium Taylor vortex flow bifurcates from the basic flow. The manner 
in which this bifurcation is altered by allowing the cylinder to  be slightly wavy was 
discussed in detail by Duck (1979). There seems little doubt that  the bifurcating 
equilibrium flow discussed in I1 is that  observed experimentally before the second 
instability. Seminara ( 3  979) has investigated the stability of the Stokes layer to 8- 
dependent perturbations. Such modes necessarily have azimuthal velocity compo- 
nents with steady terms in their Fourier decomposition. These modes were found to 
be more stable than the axisymmetric modes discussed in I. However, the axial wave- 
lengths of these modes were found to be smaller than that of the most dangerous 
axisymmetric mode so that their importance in the initial stages of the second in- 
stability is perhaps not crucial. With this in mind we shall here study the linear 
stability of the stable bifurcating Taylor vortex flow to an axisymmetric mode having 
axial wavelength twice that of the basic cellular structure. The procedure adopted 
in the rest of the paper is as follows: I n  9 2 we formulate the linear stability problem 
which determines the stability of the equilibrium Taylor vortex flow to subharmonic 
perturbations. In  9 3 we obtain an approximate solution of this problem whilst in 9 4 
we discuss the results of $ 3  and their relevance to the experimental observations 
described above. 

2. The linear stability problem for the subharmonic mode 
We consider a circular cylinder of radius R oscillating torsionally about its axis in 

an unbounded viscous fluid of kinematic viscosity v with angular velocity AwR-l cos wt.  
This motion generates a boundary layer of thickness (v/w)* a t  the cylinder. We assume 
that this boundary layer is thin compared to the radius of the cylinder. We define 
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dimensionless variables 7, y and 7 by 

(2.1 a ,  b,  c )  

where ( r ,  8, z )  are cylindrical polar co-ordinates with r = 0 corresponding to the axis 
of the cylinder. If we neglect terms of order (v/w)* R-1 in the azimuthal momentum 
equation we can easily show that for arbitrary values of Aw/R the basic flow driven by 
the cylinder is 

where 
v = w 0 ,  V ( 7 ,  7),0), 

9" = ${exp [ i ~  - ( 1  + i )  71 + c.c.}. 

(2.2) 

(2.3) 
Here C.C. denotes 'complex conjugate '. 

Suppose now that the basic flow is perturbed such that the new velocity field is 
((2vw)* u, Aw(V + v), (2vw)* w), where u, v and w are independent of the polar angle 8. 
We can show from the momentum and continuity equations that u, v,  and w satisfy 

( 2 . 4 ~ )  

(2.4b, c )  
where 

whilst T is the Taylor number defined by 

2A2 w 4 T =x (;) . 

We note that in the derivation of (2.4) we have neglected terms of order (v /w) :  R-I. 

The differential problem for (u, v, w )  is completely specified by stipulating that the 
velocity components should satisfy the no-slip conditions and vanish outside the 
boundary layer. Thus we require that 

u = v = w = o ,  r = o ,  u ,v ,w-+o,  ~ 3 0 0 .  (2.6 a,  b )  

I n  I the linearized forms of (2.4) were solved subject to (2.6) in the case when u, v, 
and w were periodic in 5 with wavelength 2 n l k .  The resulting eigenvalue problem was 
investigated and the neutral curve T = T ( k )  found. The neutral curve was found to 
be of the usual parabolic shape typical of centrifugal and convective instabilities. 
The most dangerous disturbance has axial wavenumber k = a = 0.86 and becomes 
unstable for T > 232-5. 

The nonlinear development of this particular mode was discussed in 11, where it 
was found that a stable finite-amplitude Taylor vortex flow with wavenumber 0.86 
bifurcates supercritically a t  T = TI = 232.5. Using a multiple scale expansion the 
bifurcating solution was obtained as a power series in (T - 232.5): for T > 232.5. The 
equilibrium flow constructed in this way can be expressed in the form (u, v ,  w)  = uE, 
where 

OD 

= (0, %(T, 7)) 0 )  4- c {(Un('??, T), vn(r, 7)) W n ( T ,  7)) eina' 4- c.C.1. (2.7) 
n = l  
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The functions T&, un, etc. depend on 7 and are periodic in T with period 2n. Moreover 
the azimuthal velocity components in (2.7) have no steady terms in their Fourier 
decomposition. 

We now suppose that when the Taylor number is increased further the equilibrium 
flow is still of the form given by (2.7). This assumption is entirely consistent with the 
experimentally observed flow before the second instability but for (T - 232.5)* no 
longer small i t  might be necessary to compute uE numerically. 

Suppose that we now perturb this equilibrium flow such that (u, v, w) is given by 

(u ,Y ,u~)  = u E + [ ( U ,  V ,  W)e~ia~+c.c . ] ,  (2.8) 

where U ,  V ,  and IV are small and depend only on r a n d  7. It is known from I that 
with uE = 0 such a disturbance is neutrally stable for T = T, = 328. If we substitute 
for (u, v, ui) from (2.8) into (2.4) and equate terms proportional to exp (Biac) we obtain 

au -+-+-*iaw = 0. 

(2.9b) 

( 2 . 9 ~ )  

The boundary conditions needed to completely specify the problem for ( U ,  V ,  W) are 

u =  v =  W = 0 ,  7 = 0 ,  U,V,TY+O, '?/+a. (2.10 a,  b )  

We nobe that in (2.9a, b) the functions V, ul, vl and w1 are assumed to be known. More- 
over these functions are all periodic in 7 so that, a t  least in principle, we can solve (3.9), 
(2.10) by first writing 

m 

U = e n T  Z: U, ein7, etc. 
- m  

We then substitute these expansions into (2.9), (2.10) and equate like powers of 
exp ( i ~ ) .  The resulting infinite set of coupled linear differential equations constitutes 
an eigenvalue problem, Q = QT. We are interested in finding the value of T where 
Re (Q) vanishes. We shall now try and approximate this eigenrelation by perturbation 
methods. 

3. An approximate solution of the eigenvalue problem for the subharmonic 
mode 

We shall now discuss how the rather formidable eigenvalue problem associated 
with (2.9) and (2.10) can be investigated using perturbation methods. We recall that 
the fundamental mode (k = a )  and it's subharmonic (k = &a) are neutrally stable for 
T = Tl = 232-5 and T = T, = 328, respectively. We define the quantity8 by 
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so that 6 is a measure of the closeness of these eigenvalues. In  fact 6 has the numerical 
value 0.29 but we assume that this value is sufficiently small for a perturbation solution 
of (2.9) to be developed in powers of 6. The expansion which we will set up will be 
clearly applicable to other problems where almost coincident eigenvalues occur and 
correspond to Fourier modes one of which is the first harmonic of the other. However, 
the validity of such an approach in connection with the stability problem of interest 
here can only be checked by a full numerical investigation of the partial differential 
system specified by (2.9) and (2.10). 

It is worth pointing out a t  this stage the similarity of the present approach to that 
used by Davey, DiPrima & Stuart (1968) who investigated the stability of steady 
Taylor vortices to wavy modes. In  the latter paper the quantity corresponding to S 
is the separation of the linear critical Taylor numbers for axisymmetric and non- 
axisymmetric disturbances. This quantity is again finite but Davey, DiPrima & Stuart 
treat it as a small parameter and obtain results in good agreement with experimental 
observations. 

It is clear that before solving the differential system given by (2.9) and (2.10) we 
must find some way of approximating the functions ul, wl, w1 and V, which appear as 
coefficients in (2.9). We shall do this by developing perturbation expansions for these 
functions in powers of6. In  fact it is advantageous to return instead to the differential 
equations given by (2.4) and set up a perturbation expansion of these equations which 
includes both the equilibrium perturbation uE and the subharmonic disturbance. 

We first expand the Taylor number in the form 

T = Tl+h62+ ... (3.2) 

and note that since from (3.1) we can write TI = T2-STl+O(S2); this can also be 
written in the form 

(3.3) T = !C2 - T,S + O(8)'. 

Thus we are interested in the development of the subharmonic mode in a Taylor- 
number regime close to the value of T ( =  TI)  a t  which the fundamental mode bifur- 
cates supercritically. In  such a regime the damping rate of the subharmonic mode in 
the absence of the fundamental is O(6) .  The amplitude of the first mode which bifur- 
cates a t  T = TI is O(S) in a S2-neighbourhood of Tl so that the nonlinear interaction 
of this mode with the subharmonic leads to a growth rate of order 6 for the latter 
mode. We define two slow time variables r1 and r2 by 

r1 = 6r, r2 = 627, (3.4 a ,  b )  

and introduce a parameter E representing the size of the linear subharmonic mode. 
We then expand u in the form 
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together with a similar expansion for the azimuthal velocity component v in terms of 
the functions g z m ( y ,  7, 71, 7,). The fast time dependence of the coefficients in these 
expansions is taken to  be periodic so that we can write 

(3.6a) 

The only restriction which we impose on 6 is that  e < 6% and the reason for this con- 
dition will soon become apparent. We must now substitute the expansions for T ,  u, 
and v given above into (2.4) and solve successively the systems of equations obtained 
by equating in turn terms proportional to  S, S2, S3, e and €6. Each of these partial 
differential equations is solved such that the no-slip condition is satisfied at the 
cylinder and there is no motion away from the Stokes layer. It is of interest to note 
that if the expansion (3.6a) had been in terms of even powers of exp(ir)  then the 
motion would not be confined to the Stokes layer because of steady streaming effects. 

At orders 6 and 6 we find that the solutions of the appropriate partial differential 
systems can be written in the form 

( . f10 ,2r)  I d 0 . 2 ~ - 1 )  = A(rl)  r 2 )  (ug((r)) v$’l(a))) (3.7a) 

(f ?o,zr) ~ % , 2 ~ - 1 )  = B(r1) 72)  (%?(v))%-~(v))) (3.7 b )  
where A and B are amplitude functions to  be determined a t  higher order. The func- 
tions u.$)(~))  v$Ll(7) are given explicitly in I and are evaluated a t  T = 232.5 and 
k = 0.86 whilst &$)(v), 6$Ll(q) are the same functions but evaluated a t  T = 328, 
k = 0.43. 

At orders2 we find that A is in fact a function of r, only. At this order we also deter- 
mine the mean flow correction and the first harmonic terms in the expansion of the 
velocity field. We obtain 

( f h , Z r )  d 1 , 2 r - l )  = I A 1 2  ( O ,  G O l , Z r - l ( ~ ) ) )  (3.8a) 

( . f i o , 2 r ,  d 0 , 2 r - l )  = A 2 ( ~ 2 0 , 2 r ( V ) ,  G 2 0 , z r - l ( V ) ) )  (3.8b) 

where G o l , 2 r - l ,  F,,o,2r, Gzo,2r--1 are determined by (3.11) and (3.8)) (3.9) OfIIrespectively. 
At order S3 we equate terms proportional to exp ( iac)  to  obtain an inhomogeneous 

differential system which only has a solution if an orthogonality condition is satisfied. 
This condition can be written in the form 

- -alAA-a,A(A12, 
dA 
6- (3.9) 

where a1 and a, are given by (3.15) and (3.16) of I1 respectively. In  a similar manner 
we find that if the order-e8 differential system obtained by equating terms propor- 
tional to exp (Biac) is to have a solution then 

_-  aB - blTl B-b, AB*, 
37, 

(3.10) 

where * denotes complex conjugate and b, is given by (3.15) of I1 but with a replaced 
by $a and the eigenfunctions and adjoint functions now evaluated at T = 328, k = 0.43. 
The constant b, is given by (3.16) of I1 but with the following changes: ( 1 )  the mean 
flow terms C f O l , 2 r - 1  are now set equal to zero; (2) the linear eigenfunctions u$?) v$L, are 
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replaced by tI$),@,; (3) the adjoint eigenfunctions F$,G$-, are replaced by the 
corresponding functions evaluated a t  k = 0.43, T = 328; (4) the functions F20,2r, 
620,2r-1 are replaced by u#, vJ$, respectively; ( 5 )  the wavenumber a is replaced by 
+a and To by T,. 

The constants a,, a2, b, and b, have the following numerical values: 

a, = - 0.0023, a, = 0.038, b, = - 0.00078, b, = 0-041. 

The author is indebted to Dr P. W. Duck who carried out the computations required 
to evaluate these constants. 

It follows from (3.9), (3.10) that a possible neutrally stable equilibrium flow for 
h < 0 is A = B = 0.  For h positive a finite-amplitude motion with JAI2 = -a,ha,l, 
B = 0 bifurcates from the zero solution, which itself becomes unstable. This motion 
corresponds to that which is experimentally observed before the second mode appears. 
Suppose that this flow is perturbed by writing 

(3.11 a, b )  
where q5 is the phase of the fundamental mode. If we substitute the above forms into 
(3.10) then by taking real and imaginary parts we obtain two simultaneous equations 
for the real and imaginary parts of b.  If these equations are to have a consistent 
solution then CT is found to be given by 

(3.12) 

B = b euT, A = (a,haYi)* e@, 

CT = b, T, & ( -a ,  ha,lbZ)B. 
Thus we see that one of the two possible values of CT becomes positive when 

h = A, = b!Tta2b,2a;1, 

and A, has the numerical value 323. Thus at  this value of h the bifurcating solution 
with wavenumber 0.86 becomes linearly unstable to the subharmonic with wave- 
number 0.43. We identify this occurrence with the experimentally observed ‘doubling 
up’ of vortices described in I. We are encouraged to believe that this is in fact the 
case because, if we use (3.2), then we see that this critical value of h corresponds to 
a Taylor number of 260 which is in remarkable agreement with the experimentally 
obtained value of 262 given in I .  

The fact that this Taylor number differs from T, by about +(T, - T,) raises the 
question as t o  whether we were justified in expanding T in the form (3.2).  We further 
note that when h = A, the equilibrium amplitude of the first mode is given approxi- 
mately by lA I N 4. The closeness of our theoretical prediction of the second critical 
Taylor number encourages us to believe that the ordering of terms which we have 
carried out is sensible. However, we recognize that a confirmation of the reliability 
of this ordering can only be obtained by the numerical solution of (2.9). 

4. Conclusions 
We have shown that the Taylor vortex flow which can exist in a Stokes layer on a 

torsionally oscillating circular cylinder becomes unstable to a subharmonic mode of 
instability when a critical value of the Taylor number is exceeded. The theory which 
we have given shows that, on the basis of linear stability theory, the subharmonic 
mode will grow exponentially in time for T > 260. Thus the approximate theory 
which we have given leads to excellent agreement with the experimental value T = 262 
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given in I. The corresponding value found by Donnelly & Park (1980) for the largest 
value of ratio of cylinder radius to Stokes-layer thickness investigated is T = 257. 
This remarkable agreement between theory and experiment is perhaps fortuitous but, 
even if this is the case, we believe that the present approach indicates the mechanism 
by which the fundamental mode interacts with the subharmonic to destabilize the 
latter mode. We do not investigate here the possibility of the existence of an equilibrium 
flow including the fundamental and the subharmonic. However, the (available) 
experimental results suggest that no such flow exists. Moreover it is observed experi- 
mentally that after the initial doubling up the flow becomes 8 dependent and a steady 
velocity component around the cylinder is generated. Thus we expect that an ade- 
quate description of the experimental results requires a nonlinear theory which 
allows for the existence of the fundamental, subharmonic, and the @dependent modes 
discussed by Seminara (1979). We do not pursue this question further here. 

The subharmonic destabilization mechanism which we have discussed in $ 3  is 
clearly not restricted to Stokes-layer instabilities. The expansion procedure used in 
$ 3  is clearly appropriate to any stability problem where an equilibrium flow with 
wavenumber a bifurcates supercritically from a Reynolds number R, (or Rayleigli 
number) close to a second Reynolds number R, ( > R,) a t  which the mode with wave- 
number & is linearly unstable. Our analysis shows that, if 6 is a measure of the close- 
ness of these Reynolds numbers, then the bifurcating fundamental mode becomes 
linearly unstable to the subharmonic at a Reynolds number differing from R, by 
O(S2R,). We note that the expansion procedure used will be formally valid only in 
the limit 6 -+ 0. However, in any particular problem it is possible that results based 
on such a procedure but with 6 finite are meaningful. The validity of such expansions 
can of course be checked by proceeding to higher order and/or investigating the 
problem in question numerically. 

Kelly (1  968) has discussed a subharmonic destabilization mechanism in connection 
with shear flow instabilities. In  that paper Kelly assumed a basic flow having a 
component proportional to the fundamental mode of instability. The linear stability 
of this flow to a subharmonic mode was then investigated. The size of the fundamental 
mode required to produce the linear growth of the subharmonic was determined. In  
our problem we are not in a position to ' choose' the size of the fundamental since we 
insist that the fundamental is a solution of the equations of motion. 

The author acknowledges the generosity of Dr P. W. Duck who calculated the 
numerical values of a,, a,, b,, b,. This work was partially carried out whilst the author 
was a visitor at Rensselaer Polytechnic Institute, Troy, N.Y. and was partially sup- 
ported by the U.S. Army Research Office. 
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